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1 Introduction 
 
   This Software Design Document establishes the software design for the Land 
Information System (LIS).  LIS is a project to build a high-resolution, high-performance 
land surface modeling and data assimilation system to support a wide range of land 
surface research activities and applications.  
   
    This document has been prepared in accordance with the requirements of the Task 
Agreement GSFC-CT-2 under Cooperative Agreement Notice CAN-00-OES-01 
Increasing Interoperability and Performance of Grand Challenge Applications in the 
Earth, Space, Life, and Microgravity Sciences, funded by NASA’s ESTO Computational 
Technologies (formerly High Performance Computing and Communications) Project.   
 
1.1 Purpose and goals 
 
   This document serves as the blueprint for the software development and 
implementation of the Land Information System (LIS).  
 
   The design goals of LIS are near real-time, high-resolution (up to 1km) global land data 
simulation executed on highly parallel computing platforms, with well defined, standard-
conforming interfaces and data structures to interface and inter-operate with other Earth 
system models, and with flexible and friendly web-based user interfaces.  
     
1.2 Scope  
 
     This document covers the design of all the LIS software components for the three-year 
duration of the LIS project.  The document focuses primarily on the implementation of 
the LIS software on a general-purpose Linux cluster system, and most of the component 
designs also apply to an SGI Origin 3000 system.  This document does not cover design 
for other hardware/software platforms.  
   
     Specifically, this design covers the following aspects of LIS:   
 

• Realistic land surface modeling. LIS will simulate the global land surface 
variables using various land surface models, driven by atmospheric “forcing data” 
(e.g., precipitation, radiation, wind speed, temperature, humidity) from various 
sources. 

• High performance computing. LIS will perform high-performance, parallel 
computing for near real-time, high-resolution land surface modeling research and 
operations.  

• Efficient data management. The high-resolution land surface simulation will 
produce a huge data throughput, and LIS will retrieve, store, interpolate, re-
project, sub-set, and backup the input and output data efficiently.   
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• Usability. LIS will provide intuitive web-based interfaces to users with varying 
levels of access to LIS data and system resources, and enforce user security 
policies.  

• Interoperable and portable computing. LIS will incorporate the ALMA 
(Assistance for Land surface Modeling Activities) and ESMF (Earth System 
Modeling Framework) standards to facilitate inter-operation with other Earth 
system models. In order to demonstrate portability of LIS, the land surface 
modeling component will be implemented on a custom-designed Linux cluster 
and an SGI Origin 3000.  

 
2.0  Land Surface Modeling and Data Assimilation 
 
  In general, land surface modeling seeks to predict the terrestrial water, energy and 
biogeochemical processes by solving the governing equations of the soil-vegetation-
snowpack medium.  Land surface data assimilation seeks to synthesize data and land 
surface models to improve our ability to predict and understand these processes.  The 
ability to predict terrestrial water, energy and biogeochemical processes is critical for 
applications in weather and climate prediction, agricultural forecasting, water resources 
management, hazard mitigation and mobility assessment. 
 
In order to predict water, energy and biogeochemical processes using (typically 1-D 
vertical) partial differential equations, land surface models require three types of inputs:  
1) initial conditions, which describe the initial state of land surface; 2) boundary 
conditions, which describe both the upper (atmospheric) fluxes or states also known 
as "forcings" and the lower (soil) fluxes or states; and 3) parameters, which are a function 
of soil, vegetation, topography, etc., and are used to solve the governing equations. 
 
The proposed LIS framework will include various components that facilitate global land 
surface modeling within a data assimilation system framework. The main software 
components of the system are:  

• LIS driver: is a software system that is derived from the Land Data Assimilation 
System (LDAS) that integrates the use of land surface models in a data 
assimilation framework.  

• Land surface Models: LIS will include 3 different land surface models, namely, 
CLM, Noah, and VIC.  

These components are explained in detail in the following sections.  
 
2.1 LIS driver  
 
The LIS driver that controls the execution of different land models is derived from 
LDAS. LDAS is a model control and input/output system (consisting of a number of 
subroutines, modules written in Fortran 90 source code) that drives multiple offline one-
dimensional land surface models (LSMs).  The one-dimensional LSMs such as CLM and 
Noah, which are subroutines of LDAS, apply the governing equations of the physical 
processes of the soil-vegetation-snowpack medium. These land surface models aim to 
characterize the transfer of mass, energy, and momentum between a vegetated surface 
and the atmosphere. When there are multiple vegetation types inside a grid box, the grid 
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box is further divided into "tiles", with each tile representing a specific vegetation type 
within the grid box, in order to simulate sub-grid scale variability. 
   LDAS makes use of various satellite and ground based observation systems within a 
land data assimilation framework to produce optimal output fields of land surface states 
and fluxes. The LSM predictions are greatly improved through the use of a data 
assimilation environment such as the one provided by LDAS. In addition to being forced 
with real time output from numerical prediction models and satellite and radar 
precipitation measurements, LDAS derives model parameters from existing topography, 
vegetation and soil coverages. The model results are aggregated to various temporal and 
spatial scales, e.g., 3 hourly, 0.25 deg x 0.25 deg. The LDAS driver was used in the 
baselining results presented for Milestone E. The LIS driver used for demonstrating code 
improvements for Milestone H was developed by adopting the core LDAS driver and 
implementing code improvements for enhancing performance. The structure of LDAS 
driver was also redesigned using object oriented principles, providing adaptable 
interfaces for ease of code development and extensibility. Details of the LIS driver is 
presented in the interoperability document and the code improvements are presented in 
the code improvements documents for Milestone F. The LIS driver was modified to run 
on the LIS cluster and to include the VIC code for Milestone I. 
 
   The execution of LIS driver starts with reading in the user specifications. The user 
selects the model domain and spatial resolution, the duration and timestep of the run, the 
land surface model, the type of forcing from a list of model and observation based data 
sources, the number of ``tiles” per grid square (described below), the soil 
parameterization scheme, reading and writing of restart files, output specifications, and 
the functioning of several other enhancements including elevation correction and data 
assimilation.  
   The system then reads the vegetation information and assigns subgrid tiles on which to 
run the one-dimensional simulations. The LIS driver runs its 1-D land models on 
vegetation-based "tiles" to simulate variability below the scale of the model grid squares. 
A tile is not tied to a specific location within the grid square. Each tile represents the area 
covered by a given vegetation type. 
 
  Memory is dynamically allocated to the global variables, many of which exist within 
Fortran 90 modules. The model parameters are read and computed next. The time loop 
begins and forcing data is read, time/space interpolation is computed and modified as 
necessary. Forcing data is used to specify boundary conditions to the land surface model. 
The LSMs in the LIS driver are driven by atmospheric forcing data such as precipitation, 
radiation, wind speed, temperature, humidity, etc., from various sources. The LIS driver 
applies spatial interpolation to convert forcing data to the appropriate resolution required 
by the model. Since the forcing data is read in at certain regular intervals, the LIS driver 
also temporally interpolates time average or instantaneous data to that needed by the 
model at the current timestep. The selected model is run for a vector of ``tiles'', 
intermediate information is stored in modular arrays, and output and restart files are 
written at the specified output interval. 
 
2.2 Community Land Model (CLM) 
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   CLM (Community Land Model) is a 1-D land surface model, written in Fortran 90, 
developed by a grass-roots collaboration of scientists who have an interest in making a 
general land model available for public use. LIS currently uses CLM version 2.0. CLM 
version 2.0 was released in May 2002. The source code for CLM 2.0 is freely available 
from the National Center for Atmospheric Research (NCAR)  
(http://www.cgd.ucar.edu/tss/clm/). The CLM is used as the land model for the 
Community Climate System Model (CCSM) (http://www.ccsm.ucar.edu/), which 
includes the Community Atmosphere Model (CAM) (http://www.cgd.ucar.edu/cms/). 
CLM is executed with all forcing, parameters, dimensioning, output routines, and 
coupling performed by an external driver of the user's design (in this case done by 
LDAS).  CLM requires pre-processed data such as the land surface type, soil and 
vegetation parameters, model initialization, and atmospheric boundary conditions as 
input. The model applies finite-difference spatial discretization methods and a fully 
implicit time-integration scheme to numerically integrate the governing equations. The 
model subroutines apply the governing equations of the physical processes of the soil-
vegetation-snowpack medium, including the surface energy balance equation, Richards' 
(1931) equation for soil hydraulics, the diffusion equation for soil heat transfer, the 
energy-mass balance equation for the snowpack, and the Collatz et al. (1991) formulation 
for the conductance of canopy transpiration. 
 
2.3 The Community Noah Land Surface Model 
 
  The community Noah Land Surface Model is a stand-alone, uncoupled, 1-D column 
model freely available at the National Centers for Environmental Prediction (NCEP; 
ftp://ftp.ncep.noaa.gov/pub/gcp/ldas/noahlsm/).  The name is an acronym representing the 
various developers of the model (N: NCEP; O: Oregon State University, Dept. of 
Atmospheric Sciences; A: Air Force (both AFWA and AFRL - formerly AFGL, PL); and 
H: Hydrologic Research Lab - NWS (now Office of Hydrologic Dev -- OHD)).  Noah 
can be executed in either coupled or uncoupled mode.  It has been coupled with the 
operational NCEP mesoscale Eta model (Chen et al., 1997) and its companion Eta Data 
Assimilation System (EDAS) (Rogers et al., 1996), and the NCEP Global Forecast 
System (GFS) and its companion Global Data Assimilation System (GDAS).  When 
Noah is executed in uncoupled mode, near-surface atmospheric forcing data (e.g., 
precipitation, radiation, wind speed, temperature, humidity) is required as input. Noah 
simulates soil moisture (both liquid and frozen), soil temperature, skin temperature, 
snowpack depth, snowpack water equivalent, canopy water content, and the energy flux 
and water flux terms of the surface energy balance and surface water balance. The model 
applies finite-difference spatial discretization methods and a Crank-Nicholson time-
integration scheme to numerically integrate the governing equations of the physical 
processes of the soil vegetation-snowpack medium, including the surface energy balance 
equation, Richards’ (1931) equation for soil hydraulics, the diffusion equation for soil 
heat transfer, the energy-mass balance equation for the snowpack, and the Jarvis (1976) 
equation for the conductance of canopy transpiration. 
 
2.4 Variable Infiltration Capacity (VIC) Model  
 

http://www.ccsm.ucar.edu/
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Variable Infiltration Capacity (VIC) model is a macroscale hydrologic model, written in 
C, being developed at the University of Washington and Princeton University. The VIC 
code repository along with the model description and source code documentation is 
publicly available at http://hydrology.princeton.edu/research/lis/index.html. VIC is used 
in macroscopic land use models such as SEA - BASINS  
(http://boto.ocean.washington.edu/seasia/intro.htm). VIC is a semi-distributed, grid-based 
hydrological model, which parameterizes the dominant hydrometeorological processes 
taking place at the land surface - atmospheric interface. The execution of VIC model 
requires preprocessed data such as precipitation, temperature, meteorological forcing, soil 
and vegetation parameters, etc. as input. The model uses three soil layers and one 
vegetation layer with energy and moisture fluxes exchanged between the layers.  The 
VIC model represents surface and subsurface hydrologic processes on a spatially 
distributed (grid cell) basis. Partitioning grid cell areas to different vegetation classes can 
approximate sub-grid scale variation in vegetation characteristics. VIC models the 
processes governing the flux and storage of water and heat in each cell-sized system of 
vegetation and soil structure.    The water balance portion of VIC is based on three 
concepts: 

1) Division of grid-cell into fraction sub-grid vegetation coverage. 
2) The variable infiltration curve for rainfall/runoff partitioning at the land 
surface. 
3) A baseflow/deep soil moisture curve for lateral baseflow. 

 
Water balance calculations are preformed at three soil layers and within a vegetation 
canopy.  An energy balance is calculated at the land surface. A full description of 
algorithms in VIC can be found in the references listed at the VIC website. 
 
3 LIS software architecture 
 
This section describes the software architecture of the components of LIS.  The proposed 
LIS framework will have the following functional components: (1) A system for high 
resolution global land data assimilation system, involving several land surface models, 
and land data assimilation technologies. (2) A web-based user interface that accesses data 
mining, numerical modeling and visualization tools. To facilitate these features, LIS will 
integrate the use of various software systems such as LDAS, land surface models, 
GrADS – DODS, etc. LIS is also expected to act as a framework that enables the land 
surface modeling community to define new standards and also to assist in the definition 
and demonstration of the ESMF. As a result, the design of LIS will also feature the 
incorporation of new standards and specifications such as ALMA and ESMF. 
 
Figure 1 shows the initial LDAS software architecture. As mentioned earlier, the 
baselined version of LDAS includes CLM and Noah land surface models. VIC land 
surface model will be incorporated in the Milestone I version of LDAS and LIS. 
 
Figure 2 presents the LIS software architecture. It can be noticed that LIS will be built 
upon the existing LDAS, with new components and expanded functionalities for the 
support of parallel processing, GrADS-DODS server-based data management, ALMA 

http://boto.ocean.washington.edu/seasia/intro.htm


Land Information System Software Design Document  Version 3.3 10/20/03 

6 

and ESMF-compliance, web-based user interfaces, and system management of a Linux 
cluster platform 
 
The function of LIS dictates a highly modular system design and requires all the 
modules, or components, to work together smoothly and reliably. Figure 2 shows an 
overview of the LIS software architecture and its components, and their interactions. LIS 
will continuously take in relevant atmospheric observational data, and will subsequently 
use it to force the land surface models, and the land surface simulation is carried out in a 
highly parallel fashion. Meanwhile the large amount of output data will be efficiently 
managed to facilitate reliable and easy access. Moreover, LDAS, its interface to the three 
land models (CLM, Noah, and VIC), and its input/output modules, will be compliant with 
ESMF, while the output data variables and formats, and the variables passed between 
LDAS and the three land models, will follow ALMA specification. Finally, LIS also has 
software components to manage the parallel job processing and monitor hardware status 
and manage them to ensure sustained high performance output and high availability in 
the Linux cluster environment. Following is a list of LIS software components: 
  

• Land surface modeling:  LDAS and the three land models – CLM, Noah and VIC. 
LDAS can be configured to run one, two or all the three land models at the same 
time.  

• Parallel processing: implementation of the parallelization scheme. 
• GrADS-DODS server 
• Data retrieving 
• System monitoring: only applies to the LIS cluster environment.  
 

By the use of modular programming and by conforming to well established standards 
such as ALMA and ESMF, LIS is expected to provide a flexible, extensible framework to 
land surface modelers and researchers.  A more detailed discussion of the ESMF 
interfaces is located in Section 4 of the Interface Design for Interoperability. 
 

Raw data on the Internet

Data
retrieving

Input Output

LDAS

To atmospheric models

Input
data

Output
data

Single-
processor
platform

CLM NOAH

 
Figure 1: Current Land Data Assimilation System (LDAS) structure.  It uses CLM and Noah land 

models. 
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Figure 2: Overview of LIS software architecture and its components designed for LIS cluster.  A 

subset of the components, the LDAS and parallel computing implementation, will also be tested on 
SGI Origin platforms. 

 
3.1 Software data structures 
 
This section describes the internal software data structures in LIS. As described earlier, 
the main component that drives different LSMs is the LIS driver. The one-dimensional 
land surface models such as CLM, Noah, and VIC are included as subroutines of the LIS 
driver. The LIS driver, CLM, and Noah are written in Fortran 90, while the VIC model is 
written in C. The LIS driver code is designed in a modular fashion, with a number of 
modules used to encapsulate data as well as parameters that are used to solve different 
governing equations. Please refer to the LIS code documentation 
http://lis.gsfc.nasa.gov/source/ for a detailed description of the source code.  
 
Figure 3 shows the organization of the main modules in the LIS driver.  
 
Inheritance can be defined as the sharing of structure and behavior among classes in a 
hierarchical relationship. Although F90 does not directly support inheritance, it can be 
emulated using software constructs (ref: Decyk, V. K., Norton, C. D., and Szymanski, B. 
K. "How to Express C++ concepts in Fortran 90". 
http://exodus.physics.ucla.edu/Fortran95/ExpressC++.pdf) 
 
For example, inheritance in LIS is simulated by lsm_module, which captures the behavior 
of a land surface model. It also provides a hierarchical structure to all LSMs. The 
"abstract" interfaces in lsm_module (encapsulating the main behavior associated with the 
operation of a LSM) need to be implemented by all LSMs in LIS. As a standard for land 
surface model parameters, input data, and output evolves, this structure is further 
expected to allow code sharing among different LSMs, all of them using common 
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routines for initialization, setup, output etc. The interfaces in lsm_module are 
implemented through a function table, which is implemented in C. The C language 
provides the capabilities to store functions, table them, and pass them as arguments. The 
function table implementation in C helps to resolve both F90 functions (CLM, Noah) and 
C functions (VIC) dynamically at runtime, in the same manner. Data passed from the LIS 
driver to the VIC model (written in C) is done from the F90 side through primitive data 
types, which are converted to the appropriate data structures at the C end. For models 
written in F90, there is no need for such a conversion.  
 
A more detailed description of the design is presented in the interoperability design 
document.  

 
Figure 3 : Structure of modules in the LIS driver 
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A brief description of the modules are presented below: 
 
LIS driver Modules 
 
lisdrv: is the main program in LIS driver. It controls the overall execution, and delegates 
tasks to the appropriated modules 
 
ldasdrv_module: This module contains the driver routines that control program 
execution, controlling of time, etc.  
 
lsm_module:  This module provides an abstraction of a land surface model, defining the 
interfaces and subroutines that are required for the execution of an LSM. The interfaces 
in this module need to be extended for incorporation of a new LSM into LIS.  
 
baseforcing_module: Similar to lsm_module, this module captures the behavior 
associated with introducing a new forcing scheme.  
 
grid_module:  This module is an abstract representation of a "grid" used in the LIS 
driver. The module includes non model specific parameters such as lat/lon and 
input/output forcing variables.  
 
tile_module : This module is a representation of the "tile" described in section 2.1 that is 
used to simulate sub-grid scale variability. This module includes specification of non-
model specific tile variables, such as lat/lon of tile, row/column of tile and properties 
associated with a tile.  
 
ldas_module : This module specifies the variables used in the LIS driver such as the 
model domain specifications, type of land surface model used, type of forcing, 
specification of source files, etc. It does not include specification of tile space or grid 
space variables. This module is used by the main driver and subroutines that perform 
non-model specific computations such as spatial/temporal interpolation.  
 
obsradforcing_module: This module contains interfaces and subroutines that control 
the incorporation of observed radiation forcing. 
 
obsprecipforcing_module: This module contains the interfaces and subroutines that 
control the incorporation of observed precipitation forcing.  
 
spmdMod: This module contains MPI routines for initialization.  
 
time_manager: This module contains variables and routines for the control of time.  
time_manager provides methods that eventually call the ESMF time manager.  
 
tile_spmdMod:  This module contains routines for domain decomposition in tile space. 
 
grid_spmdMod: This module contains routines for domain decomposition on the grid 
domain.  
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def_ipMod: This module contains routines for calculating parameters required for spatial 
interpolation  
 
def_agr_ipMod: This module contains routines for calculating parameters required for 
spatial interpolation for AGRMET radiation forcing data  
 
def_cmap_ipMod : This module contains routines for calculating parameters required 
for spatial interpolation for cmap precipitation forcing data  
 
The LSMs included in the LIS driver implements the interfaces and routines defined in 
lsm_module. Currently the LIS driver includes Noah, CLM, and VIC models. The main 
modules in these models are described below.  
 
CLM specific modules 
 
The modules in CLM specify runtime control variables, definition of parameters, and 
variables associated with model behavior. 
  
clmtype: This module contains the definition of variables associated with CLM.  
clm_varcon: Defines the constants associated with CLM model execution.  
clm_varctl : Defines the run control variables associated with CLM model execution. 
clm_varpar: Defines land model array dimensions. 
atmdrvMod: Defines the transfer of forcing onto clm variables.  
histHandlerMod: Handles history, files used for restart.  
 
Noah specific modules 
 
Noah includes a number of modules that encapsulate model driver options, specification 
of forcing input, and parameters.  
 
noah_module : This module specifies one-dimensional Noah land driver variable 
specification. It includes Noah state parameters, output variables, etc. 
noah_atmdrv:  This module specifies the routines for transfer of forcing from the LIS 
driver to Noah variables. 
  
VIC structures 
 
VIC includes a number of structures that are used to encapsulate model options, forcing 
parameters, global simulation parameters, soil and vegetation parameters, etc. The main 
structures are:  
 
option_struct : This structure is used to store model options. 
global_param_struct : This structure is used to store the global parameters defined for 
the current simulation. 
soil_con_struct : This structure is used to store the constant variables for the soil in the 
current grid cell.  
veg_con_struct : This structure is used to store all constant parameters for the vegetation 
types in the current grid cell.  
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atmos_data_struct : This structure is used to store the meterological forcing data for 
each time step. 
cell_data_struct :  This structure is used to store the grid cell specific variables, not 
included in the vegetation structures.  
energy_bal_struct : This structure is used to store all variables used to compute the 
energy balance and soil thermal fluxes.  
snow_data_struct:  This structure is used to store all variables used by the snow 
accumulation and ablation algorithm, and the snow interception algorithm. 
 
4 Hardware Platforms for LIS 
 
This section describes the hardware operational platforms intended for LIS. The SGI 
Origin 3000 will be used to implement and demonstrate only the high resolution, parallel, 
global land surface modeling and data assimilation components (LDAS/CLM/Noah/VIC) 
of LIS. The fully operational LIS (with user interfaces and visualization components such 
as GrADS - DODS) will be demonstrated on a custom designed Linux cluster. The 
following section describes the hardware design of the cluster. 
 
4.1 LIS cluster architecture 
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Figure 4: The physical architecture of the LIS Linux cluster. The cluster has 8 IO nodes and 192 
compute nodes. Each IO node has dual Athlon CPUs,  2GB RAM and Gigabit NICs,  and each 
compute node has a single Athlon CPU , 512MB RAM and a Fast Ethernet NIC. 
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    Figure 4 shows the physical architecture of the LIS Linux cluster. The cluster consists of 
192 computing nodes. The cluster also includes 8 IO (input – output) nodes, specifically 
to handle the huge data management requirements. These nodes are interconnected with 8 
Ethernet switches. 
   
   The 192 computing nodes are divided into 8 sub-clusters, with 24 nodes in each sub-
cluster, interconnected with fast Ethernet via one of the 8 24-port fast Ethernet switches. 
Each switch also has two gigabit ports to connect the 8 IO nodes and the other switches.  
 
   The use of 8 sub-clusters and 8 IO nodes is mainly for the segregation of network 
traffic resulting from non-local file IO operations, and for the spreading of data storage so 
each IO node does not have to deal with single big files. So in average each IO node will 
only need to serve the IO requests of 24 computing nodes, and only store 1/8 of the 
output information, which makes the output volume manageable.  
 
4.2 System Monitoring 
 
The system monitoring component is responsible for monitoring, maintaining and 
administering the LIS system on the Linux cluster to ensure its reliable operation and 
optimal performance output.  
 
We categorize the system management function into four levels: hardware level, 
interconnect level, operating system level and application software level. For the SGI 
Origin 3000 platform, we are not involved in the management of the hardware and 
interconnect levels. But for the Linux cluster, the hardware and interconnect level 
management is our responsibility and is critical to the overall stability and performance 
of the LIS system.  
 
The hardware level system management involves power-up and shutdown of the nodes, 
booting strategy and hardware status monitoring. Interconnect level management requires 
the monitoring of the link status of the network nodes, bandwidth usage and traffic 
statistics. Operating system level management takes care of system resource usages, such 
as CPU, memory and disk space usage. Application level management oversees the 
progress of the LIS jobs, configures different runs, analyze performance bottlenecks, and 
obtain performance profiles for fine-tuning. Dynamic error and diagnostic logs will be 
maintained for LDAS and the land surface models during the operation of LIS. The 
diagnostic logs will be available to the end users.  
 

4.2.1  Hardware monitoring data 
 
The following table summarizes the system data of various levels the management 
subsystem is designed to collect and analyze.  
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Table 1: Hardware monitoring and management data collection 

Category  Data Items Update frequency
Overall cpu/mem of each process 1min

Overall progress of whole job 2min

Progress of each process 1min
Timing of each module sampled, off-line
Memory usage of each module sampled, off-line
Total memory usage & biggest user 2min
Total CPU usage & biggest user 2min
Total disk space usage 2min
System up-time and running procs 2min
Bandwidth usage of each node 2min
Bandwidth usage of switches 2min
Latency measurements 2min
Packet drops measurements 2min
Fan speeds 10min
Chasis temperature 10min
Power supplies voltage 10min

LIS Cluster System Monitoring and Management Data

Operating system level

Interconnect level

Hardware level

Application level

 
 

4.2.2  Architecture and implementation 
 
The variety of system variables and management duties requires us to design a 
management system with modules performing individual and well-defined tasks. Figure 5 
shows the structured design of the system management functionalities for the Linux 
cluster platform. We will not implement such a system on SGI because the SGI platform 
is not under our management control.  
 
On the hardware level, we will design scripts to take advantage of the “Wake-on-Lan”  
technology for powering up the nodes smoothly in a well-defined pattern. The nodes will 
be able to boot across the network with the PXE technology, as well as from the local 
disk, to centralize system software management. After booting, each node’s hardware 
parameters, such as CPU temperature, cooling fan speeds and power supply voltages, will 
be collected by kernel modules called “lm-sensors”, and sent to the central management 
station with web-based display with automatic updates.  
  
On the interconnect level, we will use SNMP protocol as the underlying data collection 
and management mechanism, interfaced with MRTG for web-based display of network 
statistics. Additional network data can also be collected by Big Brother system and 
network monitor, also with web output.  
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On the operating system level, we will use SNMP and various OS shell commands and 
utilities to collect system data, and use MRTG and Big Brother as the interface.  
 
On the application level, we will develop CGI scripts, interfaced with OS commands and 
utilities, to provide a web-interface for the monitoring and control of LIS jobs and 
processes. Standard performance profiling and debugging tools will be used off-line to 
analyze sample runs for trouble-shooting and performance fine-tuning.   
 

OS resource
management

Interconnect
management

Hardware
management

Application
management

Monitoring and
management stations

Wake-on-Lan

LM78/80

SNMP

OS commands

Profiling tools

LIS hardware/software
system

OS commands

SNMP

PXE

 
Figure 5: LIS system monitoring and management architecture for the LIS Linux cluster. This 

system will not be implemented on SGI since it is not under our control. 

 
 
 
5 High performance computing in LIS 
 
Accurate initialization of the land surface moisture, carbon, and energy stores in a fully 
coupled climate system is critical for meteorological and hydrological prediction. 
Information about land surface processes is also of critical importance to real-world 
applications such as agricultural production, water resource management, flood 
prediction, water supply, etc. The development of LDAS has been motivated by the need 
for a system that facilitates land surface modeling with an assimilation system to 
incorporate model derived and remotely sensed data. LDAS system has been successfully 
used in simulations for North America at 1/8 degree resolution in both real time and long 
term (50 years) retrospective simulations. However, to truly address the land surface 
initialization and climate prediction problem, LDAS needs to be implemented globally at 
high resolution (1km). The computational and resource requirements increase 
significantly for global modeling at such high resolutions. The proposed LIS system will 
aim to make use of scalable computing technologies to meet the challenges posed by the 
global, high-resolution land surface modeling.  
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5.1 Parallel processing in land surface modeling 
 
Parallel computing is a powerful programming paradigm to deal with computationally 
intractable problems. The notion behind parallel programs is to divide the tasks at hand 
into a number of subtasks and solve them simultaneously using different processors. As a 
result, a parallel system can improve the performance of the code considerably.  
 
The land surface modeling component in LIS is designed to perform high-performance, 
parallel simulation of global, regional or local land surface processes with initially three 
land surface models: the CLM model, the Noah model and the VIC model. Specifically, 
the land surface modeling component will interact with the data management components 
to obtain properly formatted input forcing data, and pass the forcing data, along with 
other static parameters, to the three land surface models through the LIS driver. Each of 
the land surface models carries out the simulation on a distributed, parallel hardware 
platform, either a Linux cluster or a SGI Origin 3000. The results are passed to the output 
component, which interacts with the data management subsystem to handle the output 
data.  
 
As shown in Figure 6, and described in detail in the land surface model documentation, 
land surface models proceed in a manner similar to other physical models.  Modeling 
proceeds given prior knowledge of the spatial and temporal domains of the simulation, in 
addition to initial conditions and parameters required to solve the equations of water and 
energy conservation within that domain.  Modeling proceeds according to increments of 
time (“time steps”, typically 15 minutes), until the ending time is reached and data is 
written out for future runs and analysis. 
 
    The land surface modeling subsystem is designed to be running in parallel, both on a 
Linux cluster with 200 nodes, and on a SGI Origin 3000 platform with 512 processors. 
Although the hardware architecture differs greatly between the distributed-memory Linux 
cluster and the shared-memory SGI Origin 3000, our implementation of the land surface 
modeling programs will make this architectural difference fairly transparent: On the 
Linux cluster, each node will run a copy of the land surface modeling process; on the SGI 
Origin, each CPU will run a copy. Thus we establish a direct correspondence between a 
node in the Linux cluster and a CPU in the Origin 3000. 
 
Land surface processes have rather weak horizontal coupling on short time and large 
space scales, which enables highly efficient scaling across massively parallel 
computational resources. LIS aims to take advantage of this weak horizontal coupling of 
land surface processes by using a coarse-grained parallelization scheme, which does not 
require communication between the compute nodes. This design fits well with the 
distributed memory nature of the Linux cluster architecture.  
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Figure 6: LIS land surface modeling flowchart 

 
  The parallelization scheme employed in the land surface modeling component in LIS is 
based on a master slave paradigm, where a master processor performs the initializations, 
and domain decomposition. The compute nodes perform computations on the 
decomposed domain. The master processor carries out the global output routines once the 
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compute nodes finish their tasks. The parallel processing component plays a critical role 
to connect the land surface modeling job to the underlying multi-processor parallel 
computing hardware platform, in our case, a Linux cluster or an SGI Origin 3000, to 
achieve the goal of near real-time processing of high-resolution land surface data. 
 
   We estimate that at 1km resolution LIS will deal with ~50,000 times more grid points 
than the 2ºx2.5º resolution. The baselining report from Milestone E estimates that the 
memory requirements at 1km is in the order of terabytes, which is unmanageable either 
on the Linux cluster or on the shared memory SGI platforms. The code improvements 
and redesigns conducted for Milestone F significantly reduced these memory 
requirements. However, the projected memory requirements from the improved LIS code 
from Milestone F still estimates approximately 500GB for 1km execution. This makes 
the simple paradigm, where the master handles the global initializations, intractable. To 
avoid the bottleneck from this scheme, we plan to redesign the input data flow taking 
advantage of the GrADS-DODS (GDS) servers’ features. GDS provides capabilities for a 
client to dynamically retrieve subsets of data on a global domain. A GDS Server on a 
master node will perform the tasks of serving data to the compute nodes. The domain 
decomposition can be achieved by the compute nodes making requests for data on the 
domain they are performing the computation, instead of a master processor distributing 
data to them.  
 

To satisfy the requirements of real-time operation, the job, which includes a grid 
representation of the global land surface, must be split into smaller pieces and run in 
parallel. We plan to divide the global surface into 10,000 small land pieces, and with 1km 
resolution, each piece would require about 5 times as many computations as the 2ºx2.5º 
LDAS, and will take a single computing node about 200MB memory to run, and 10 
minutes to finish a 1-day simulation, based on the initial performance baselining of 
LDAS running at both 2ºx2.5º and 0.25ºx0.25º resolutions. The Linux cluster can 
consume approximately 200 pieces per round, and under ideal conditions, it will take the 
whole cluster about 50 rounds to finish the whole job. This will take 500 minutes, or 
about 9 hours, to finish a 1-day simulation of the whole global land surface, which 
satisfies the real-time requirement with enough extra room. We expect that the timings on 
the SGI Origin will be comparable to those on the cluster, although memory and disk 
limitations, some imposed by the queue structure, will likely prohibit effective use of that 
system for demonstrating LIS in a near-real-time mode.  However, we plan to 
demonstrate the LIS on the SGI Origin system as proof-of-concept. 
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Figure 7: Compute nodes flowchart for parallel computing of land surface modeling. A compute 

node does not communicate to other compute nodes. 

 
 A compute node’s job is to run a copy of the land surface modeling subsystem in 
its process space, compute a piece of land surface obtained from the IO node, and request 
another piece of land surface from the IO node as soon as it finishes the current piece, 
until the IO node refuses to give it any pieces, in which case there are no more land 
pieces are available and the compute node’s job is done.  Figure 7 shows the flow chart of 
the compute node’s job handling process.  
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Figure 8: Parallel computing control flowchart (left) and parallelization scheme (right) of a master 

node. 

 
   We propose to use a modified version of the “pool of tasks” scheme for the parallel 
processing of the land pieces. A pool of tasks paradigm is equivalent to a master – slave 
programming notion, where a single processor will act as a master node and distribute 
jobs to the slave (compute) nodes. In the LIS “pool of tasks” design, one of the IO nodes 
will act as a master node and another IO node will be designated as a backup to it.  
The master node will keep three tables on hand when starting the job: table of unfinished-
jobs, finished-jobs, and jobs-fetched. At the beginning, the 10,000 land pieces are listed 
in the "unfinished" table, and each compute node comes to the master to fetch a piece 
from it, and starts working on it. The master node then moves the fetched jobs to the 
"jobs-fetched" table, and starts a timer for each fetched job. The timer specification will 
be based on the existing knowledge of a single execution of a land surface model. When 
a compute node finishes a job and notifies the master node before the job’s corresponding 
timer runs out, this piece is regarded a finished job, and the master node moves it from 
the "fetched" table to the "finished" table. And the compute node goes on to fetch another 
job until the "unfinished" table is empty. If a fetched job's timer runs out before the 
compute node reports back, the master node then assumes that that particular compute 
node must have crashed, and then moves that timed-out job from the "fetched" table back 
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to the "unfinished" table for other compute nodes to fetch. Figure 8 shows the flowchart 
(left) of the master node’s job handling and scheduling process, and the various status of 
the three tables (right) the master node uses to keep track of the job progress at different 
corresponding stages in the flowchart.  
 
To maximize throughput of the system in a parallel environment, load balancing is 
required to keep the compute nodes busy by efficiently distributing the workload.  The 
use of a "pool of tasks" is effective in achieving automatic load balancing by minimizing 
the idle times of compute nodes, since the nodes that finish their computations will 
request more tasks than the ones that require more time for their computations. This 
automatic, asynchronous scheduling help in keeping the compute nodes busy without 
having to wait for other node's computations.  
 
As shown in Figure 8, as the land surface modeling process starts, the master node 
divides the globe into a number of smaller pieces. The inputs required by the land surface 
models, namely, initial conditions, boundary conditions, and parameters will be provided 
to the compute nodes before the land surface model run begins. The modeling process 
can be a fresh initialization (cold start) or a restart from a previously finished run. This 
process also requires preprocessing of the data such as time/space interpolation. The 
output from each compute node, after the computation, will be reassembled at the IO 
nodes.  
 
6 Data Management in LIS 
 
The data management subsystem in LIS is composed of the following functions: input 
data retrieval from the Internet, data pre-processing and post-processing, data 
interpolation and sub-setting, output data aggregation, storage, backup and retrieval. It 
links the other subsystem together, and ensures smooth end-to-end data flow, from the 
input raw data all the way to the output data satisfying LIS users’ various requests. The 
following sections describe the data flow and volume used in LIS operation, the use of 
GrADS-DODS server for data management, visualization, the Live Access Server (LAS) 
server for visualization, etc., and other functions such as data retrieval. 
 
6.1 Data flow and volume in LIS 
 
   Figure 9 shows the global logical data flow of LIS system on the LIS cluster platform.  
On SGI Origin platform, the IO nodes in Figure 3 will be replaced by local disks for the 
IO functions, and the compute nodes are replaced with the same number of CPUs. Input 
data will be pre-staged on SGI instead of using GrADS-DODS servers.  
 
    LIS will deal with three categories of global data: parameter data, input forcing data 
and output data. At the top level of the system design, the global data are represented by 
data files of various formats. 
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Figure 9: LIS global logical data flow on LIS Linux cluster.  Physically, the IO nodes for input data 
and output data on the two sides of the cluster are the same IO node computers. On SGI, the flow is 

similar, except the IO nodes will be replaced by local hard disks, and the compute nodes will be 
replaced by CPUs. GrADS-DODS servers will not be used on SGI. Instead, the data will be pre-

staged. 

   The parameter data include the vegetation classification, land mask, etc., with a size of 
about 136 GB. Since these data will not be updated frequently, we will put a copy of 
these data on each compute node's local disk to reduce network traffic. Currently the bulk 
of the data are saved as ASCII data, and we will convert the data into binary format to 
allow all the static data to fit on the node's 80 GB disk.  
 
   The forcing data, fetched from various locations on the Internet, needs to be fed to the 
compute nodes at regular intervals. The total traffic is estimated to be 279 MB/day, which 
is not significant compared to the output data traffic. We designate one of the IO nodes to 
fetch and pre-process the data, then send a copy of the forcing data to the other IO nodes 
via NFS system.  When a compute node needs the forcing data, it will contact the IO 
node, which corresponds to the sub-cluster it belongs to without bothering other IO 
nodes. To further reduce the IO network traffic, each IO node will run the GrADS-DODS 
server to feed the compute nodes with the sub-set of the data they need.  
 
  The output data will be stored on the IO nodes too, and served to users via a GrADS-
DODS server running on one of the IO nodes. Since it is not feasible to store the output 
in a single file (200 GB/day), we want to distribute the data across all the IO nodes. To 
keep the huge output data volume manageable, we designed a storage scheme that will  
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distribute the land surface variables in the output data across the IO nodes. Since there are 
40-48 variables in the output data, with some of them having multiple levels, we can let 
each IO node to store the global data of only 6 or so of the output variables. So on 
average, the I/O traffic is segregated and each IO node is only taking 1/8 of the total data 
traffic, and the subsequent operations by the GrADS-DODS servers are greatly 
simplified.   
 
Table 2 lists all the global data files and specifications. As described in Section 2, these 
files specify the parameters, initial and boundary conditions required for the land surface 
model runs. For e.g, the forcing data translates to variables such as total precipitation, 
convective precipitation, downward shortwave and longwave radiation, near surface air 
temperature, near surface specific humidity, near surface U, V, winds and surface 
pressure. In addition to these files, the user also specifies parameters such as the spatial 
and temporal resolution, the land surface model, etc. LDAS also allows the user to 
initialize state variables, either by specifying a global uniform value or taken from a 
restart file produced by a prior run. Please refer to the LDAS source code documentation 
on the LIS web site (http://lis.gsfc.nasa.gov/documentation/source/) for a detailed 
description of the input/output routines corresponding to each file. The output from the 
land models translates to variables such as soil moisture, surface runoffs, canopy 
transpiration, etc.  
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Dataset Description Desired 
resolution

Native 
format

Approx 
size

Update 
frequency

GDAS forcing data

The Global Data Assimilation System (GDAS) is the 
global, operational weather forecast model of 
NCEP(Derber et al 1991). LDAS makes use of GDAS 0, 
0.3, and, as needed, 6 (hour) forecasts, which are 
produced at 6 hour intervals

Native T170, 
~0.7deg GRIB

50M/day 
(3.2M X 4 

X4)
Every 6 hours

GEOS forcing data

Obtained from GSFC’s Goddard Earth Observing 
System Data Assimilation System (GEOS) (Pfaendtner 
et al. 1995) version 4.3 that supports level-4 product 
generation for the NASA Terra satellite (Atlas and 
Lucchesi 2000).

1 deg Binary 25M/day Every 3 hours

AGRMET SW flux data Binary 48M/day Every 1 hour

AGRMET LW flux data Binary 144M/day Every 1 hour

CMAP Precipitation 

This data set consists of monthly averaged precipitation 
rate values (mm/day) for the time period Jan 1979-Dec 
2001. The data is 2.5x2.5 gridded (144x72) and covers 
88.75N to 88.75S and 0E to 357.5 E (eastward). The 
data range is approximately 0 to 70mm/day.  The 
standard (without NCEP/NCAR Reanalysis data) version 
has some missing values. 

2.5X2.5 NETCDF 9.5M/month Every 5 days

Total data input flux 267M/day

~48km

LDAS estimates global, downward shortwave and 
longwave radiation fluxes using a procedure from the Air 
Force Weather Agency’s (AFWA) Agricultural 
Meteorology modeling system (AGRMET). It utilizes the 
AFWA Real Time Nephanalysis (RTNEPH) 3-hourly 
cloud maps (Hamill et al. 1992), and the AFWA daily 
snow depth (SNODEP) maps (Kopp and Kiess 1996) to 
calculate surface downwelling shortwave radiation using 
the algorithms of Shapiro (1987)
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Dataset Description Desired 
resolution

Native 
format

Approx 
size

Update 
frequency

UMD Vegetation 
classification map

This file lists the frequency with which of each of the 14 
vegetation types occurs in each of the 0.25 degree LDAS 
grid boxes. See 
http://ldas.gsfc.nasa.gov/GLDAS/VEG/GLDASveg.shtml 
for a detailed description.

1km X 1km ASCII 65G Static

UMD Land mask

This ascii file contains the LDAS unified land/sea 
mask.See 
http://ldas.gsfc.nasa.gov/GLDAS/VEG/GLDASveg.shtml 
for a detailed description.

1km X 1km ASCII 18G Static

Soil classification map 1km X 1km ASCII 20G Static

Soil color map 1km X 1km Binary 2G Static

Sand fraction file 1km X 1km Binary 6G Static

Clay fraction map 1km X 1km Binary 6G Static

Leaf area index (LAI) 1km X 1km Binary 1M Static

AVHRR-derived LAI 
climatology 1km X 1km Binary 5G Static

Slope
Derived from GTOPO32 DEM data. GTOPO30 is a 
global digital elevation model (DEM) with a horizontal 
grid spacing of 30 arc seconds (approximately 1 
kilometer). GTOPO30 was derived from several raster 
and vector sources of topographic information by USGS.

1km X 1km Binary 2G Static

Static file size 138G

The soil parameter maps used in LDAS were derived 
from the global soils dataset of Reynolds et al. (1999). 
That dataset includes the percentages of sand, silt, and 
clay, among other fields, and is based on the United 
Nations Food and Agriculture Organization (FAO) Soil 
Map of the World linked to a global database of over 
1300 soil pedons. The LDAS soil color map was 
interpolated from a 2 x 2.5 degree global map produced 
by NCAR0.01.bin

This was generated using three information sources: (1) 
an 8km resolution time series of LAI, which was derived 
by scientists at Boston University (Myneni et al. 1997) 
from AVHRR measurements of normalized difference 
Avegetation index (NDVI) and other satellite 
observations.(2) A climatology based on the 8km time 
series and (3) the 1km UMD vegetation type 
classification.

Dataset Description Desired 
resolution

Native 
format Approx size Update 

frequency
 1km X 1km 200G/day

 5km X 5km 8G/day

 1/8 X 1/8 deg 0.9G/day

 1/4 X 1/4 deg 0.2G/day

Total data output flux 210G/day

CLM output data 

Binary
with 

optional
GRIB

every hourLIS output data of ~37 variables

 
Table 2: LIS global data files and volume estimation. 

 

 
 
6.2 GrADS-DODS server structure 
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   GrADS-DODS servers will be employed both to serve the input data to the land 
surface computing code, and to serve the output to the Internet users. Figure 10 shows the 
architecture of  the GrADS-DODS server. A GrADS-DODS server uses a typical client-
server architecture to communicate with the DODS clients. The communication protocol 
between a client and a server is HTTP. A GrADS-DODS server has the following 
components: Java servlets contained in the Tomcat servlet container, to handle the client 
requests and server replies via HTTP protocol; DODS server APIs, to parse the DODS 
requests and package output data; interface code, to translate the DODS requests into 
GrADS calls; and finally, GrADS running in batch mode, to actually process the requests, 
and perform data-retrieving, sub-setting and processing on the server side. 
 
The LAS Server provides an additional web interface for users to search a data catalog, to 
visualize data interactively, and to download the data in various formats.  LAS uses perl 
scripts to retrieve the metadata from the LIS output files, and save the metadata in a SQL 
database system, MySQL.  The LAS server and its accompanying database, MySQL, will 
be running on the same LIS cluster node.   
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Figure 10: GrADS-DODS server architecture. 

6.3 Description for data retrieving component 
 
     The data retrieving component locates and downloads various atmospheric forcing 
data sets, as specified in Table 1, at regular intervals, from the Internet to LIS’s local 
disks. The data retrieving component will also perform some basic pre-processing on the 
forcing data. 
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6.3.1 Implementation 
    Additional information on the data management can be found in the Data Management 
Design for the Land Information System document found at the LIS web site 
http://lis.gsfc.nasa.gov/documentation.  
 
 
7 Interoperability and Community Requirements 
 
Interoperability means the ability of a system to use parts of another system and also 
provide parts of itself that can be used by other systems to ease the cost of development 
and foster better interaction between different research groups. Code interoperability is 
important not only between components within an application, but also between different 
applications. LIS defines two different types of interoperability: internal and external. 
Internal interoperability mainly deals with the aspects of making components within LIS 
interoperable and the external interoperability deals with the interaction of LIS with other 
related scientific community applications and standards.  
  
 
7.1  Internal Interoperability 
 
 Interoperability within the LIS will allow for the addition of improved sources of input 
data and land surface models as they become available.  As currently designed, the LIS 
has three land surface models available for use.  The LIS community has identified a 
number of other land surface models that would be scientifically beneficial.  Likewise 
with the input data, additional sources of input data would be scientifically beneficial if 
they were available in LIS.   
 
Interoperability within the LIS system is achieved by reorganizing the LIS driver to 
organize the code and module control into a framework by designing flexible and 
adaptive interfaces between subsystems.  The LIS driver makes use of the advanced 
features of the Fortran 90 programming language, which are especially useful for object- 
oriented programming.  The design uses object-oriented principles to provide a number 
of well-defined interfaces or "hook points" for adding additional land surface models and 
input data sets.  These interfaces are implemented by using a number of virtual function 
tables and the actual delegation of the calls at runtime is done at runtime by resolving the 
function names from the table. C language allows the capabilities to store functions, table 
them, and pass them as arguments. F90 allows passing of functions as arguments. By 
combining both these languages, LIS uses a complete set of operations with function 
pointers. The LIS driver will provide the land surface modeling community an avenue to 
easily add additional models or input data through the use of such an extensible system.  
A more detailed description can be found in Section 3 of the Interface Design for 
Interoperability for the Land Information System on the LIS web site. 
 
7.2 External Interoperability 
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The LIS design also needs to be interoperable with frameworks outside of LIS so that the 
outputs from LIS can be useful to weather and climate models.  External  
interoperability is achieved by adopting the ALMA data exchange convention and by 
being a fully compliant component of the ESMF. By following the ALMA standard, the 
LIS land surface modeling system is guaranteed to exchange data with other land surface 
modeling systems that are also ALMA-compliant.  
 
ESMF compliance will allow us to interact with other Earth system models, such as 
atmospheric models or climate models with compliant interfaces.  ESMF is intended to 
provide a structured collection of building blocks that can be customized to develop 
model components.  ESMF can be broadly viewed as consisting of an infrastructure of 
utilities and data structures for building model components and a superstructure for 
coupling and running them.  ESMF provides a utility layer that presents a uniform 
interface for common system functions.  LIS plans to use ESMF time management utility 
that provides useful functions for time and data calculations, and higher level functions 
that control model time stepping and alarms.  ESMF also defines a number of guidelines 
for applications that are intended to be coupled.  For gridded components, ESMF is 
expected to provide standard methods for components to be initialized in parallel 
configurations and destroyed.  LIS will also aim at implementing these interfaces so that 
LIS can be coupled with other earth system model through ESMF as well as with the 
utilities provided for gridded components.   

 

Figure 11 shows the structure of both internal and external interfaces in LIS. The input 
and output data in LIS will conform to ALMA data exchange standards. The LIS driver 
will provide a structured set of interfaces for incorporation of new LSMs. Further, the 
LIS driver will provide an ESMF complaint interface and use the ESMF_State to 
exchange information with other ESMF compliant systems. A more detailed description 
of interoperability design issues can be found in the Interface Design for Interoperability 
for the Land Information System at the LIS web site. 
 
8 User interface design 
 
The user interface in LIS is an important component of LIS that will allow the interactive, 
flexible, use of the LIS hardware and software to users. The LIS user interface is intended 
to be web-based, and designed to allow for cascading complexity depending on the level 
of user’s need to control the system. The following sections present various facets of the 
user interface design of LIS. 
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Figure 11 : Interfaces for Interoperability in LIS 

 
 
8.1 User interface components 
 
The user interface subsystem takes a typical multi-tier client-server system architecture. 
On the client side, a user has three types of client programs to use as the front-end: a web 
browser, an ftp client program (which can be integrated in a web browser), or a DODS 
client program. On the server side, a general purpose web server will be used to serve 
clients with a web browser, and a GrADS-DODS server will be deployed to serve DODS 
clients, and a FTP server to server ftp clients. Besides these components, CGI scripts and 
CGI-GrADS gateway scripts will be used as the middleware to perform dynamic 
processing based on users’ interactive requests sent through web browsers.   Figure 12 
shows the user interface architecture design. 
 

http://www.ccsm.ucar.edu/
http://www.ccsm.ucar.edu/
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Figure 12: LIS user interface architecture. 

. 

Additional information on the User Interface Design for the Land Information System 
can be found at the LIS web site http://lis.gsfc.nasa.gov/documentation/. 
 
8.2 User Levels  
   Outside users accessing the LIS are categorized into three levels, associated with 
different levels of data access and security requirements.  
 
    Level 1 users are the general public, who will access the LIS data primarily through a 
standard web browser. Information provided to this class includes static images and text, 
and some limited interactive content such as GIF/JPG/PNG images generated on the fly 
in response to users' regulated web input.  The static content, most of which is static html 
pages, is served via the web server, while the interactive content is generated via a three-
tier architecture with server-side GrADS as the image engine and below it the GrADS-
DODS server as the data engine to feed the server-side GrADS. This group of users does 
not have direct access to the data or LIS scientific computing power system, and their 
usage of system resources is very limited. Therefore, for this class of users we do not 
enforce any additional authentication or authorization procedures. It is also our intention 
to facilitate easy access to the data for education and outreach purposes. Figure 13 is a 
screenshot of the LIS entry page. 
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Figure 13: Screenshot of LIS web entry page. 

 
Level 2 users have direct access to LIS data, either through our GrADS-DODS server by 
using a DODS client, or directly through ftp fetches. The GrADS-DODS server provides 
the users with the ability and flexibility to get only a sub-set of the data they need.  To be 
authorized as Level 2 users, they will have to register with us first by filling out web 
forms, and they will be authenticated using name and password before accessing the data. 
The GrADS-DODS server will impose a limit on system resource usages.  The GrADS-
DODS server allows the system administrator to limit the system usage by configuring 
the following parameters for each authorized address: 
 
Level 3 users will have access to the parellel computing power of the LIS system, 
including an account on the LIS cluster and a web interface for submitting LIS jobs, as 
shown in Figure 14.  The configuration parameters entered into the web form will be 
converted to LIS configuration files to control model runs. A LIS configuration file is 
submitted to the LIS scheduler which runs the job and places the output in a user-unique 
output  directory in proper format for visualization.  All the parameters will have default 
values.   
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Table 3: Configurable GrADS-DODS parameters for access to level 2 users of LIS 

Parameter Description 
Subset limit Sets the maximum size in megabytes of a 

subset 
Generate limit  Sets the maximum size in kilobytes of a 

generated dataset 
Upload limit   Sets the maximum size in kilobytes of an 

uploaded dataset 
Time limit   Sets the maximum time in milliseconds 

that a dataset generation task is allowed 
Hit limit   Sets the maximum number of hits per hour 

permitted from a specific IP 
Abuse limit  Sets that length of time in hours an IP 

address will be blocked out after exceeding 
the hit limit 

Deny datasets  A comma delimited list of datasets that 
should not be accessible 

Allow datasets  A comma delimited list of datasets that 
should be accessible 

 
 
 

 
 

Figure 14: Sample design of LIS User Interface (Level 3) 
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